Abstract

Purpose This paper aims to present a solid freeform fabrication-based in situ three-dimensional (3D) printing method. This method enables simultaneous cross-linking alginate at ambient environmental conditions (temperature and pressure) for 3D-laden construct fabrication. The fabrication feasibility and potentials in biomedical applications were evaluated. Design/methodology/approach Fabrication feasibility was evaluated as the investigation of fabrication parameters on strut formability (the capability to fabricate a cylindrical strut in the same diameter as dispensing tip) and structural stability (the capability to hold the fabricated 3D-laden construct against mechanical disturbance). Potentials in biomedical application was evaluated as the investigation on structural integrity (the capability to preserve the fabricated 3D-laden construct in cell culture condition). Findings Strut formability can be achieved when the flow rate of alginate suspension and nozzle travel speed are set according to the dispensing tip size, and extruded alginate was cross-linked sufficiently. A range of cross-linking-related fabrication parameters was determined for sufficient cross-link. The structural stability and structural integrity were found to be controlled by alginate composition. An optimized setting of the alginate composition and the fabrication parameters was determined for the fabrication of a desired stable scaffold with structural integrity for 14 days. Originality/value This paper reports that in situ 3D printing is an efficient method for 3D-laden construct fabrication and its potentials in biomedical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.