Abstract
Biochar has been proven to be capable of improving the performance of anaerobic digestion (AD). However, the effect of biochar on microbial communities remains ambiguous. In this study, the influence of pH was excluded in a semi-continuous anaerobic digestor for the treatment of dewatered waste activated sludge (WAS) to determine the effect of biochar on microbes. Compared with the control group, the average methane production increased by 24.5% and 23.2% at the organic loading rates (OLRs) of 1.56 and 3.00 gTS/L/d, respectively, in the presence of biochar. This study innovatively found biochar accelerated the enrichment of Methanofastidiosaceae, which competed with Methanobacteriaceae for H2, and its abundance increased from 0.99% at the OLR of 1.56 g TS/L/d to 16.57% and 38.11% at the OLR of 3.00 and 5.60 gTS/L/d, respectively. The efficient metabolic network of f__norank_o__Aminicenantales, syntrophic bacteria, Methanofastidiosaceae and Methanosaetaceae promoted the conversion of WAS to CH4 in the biochar group. In addition, metagenome analysis revealed that biochar optimized the metabolites related to energy conservation and electron transfer, particularly for hydrogenase (frhABG, mbhLHK and hndA-D), confirming that biochar changed the way H2 was involved in methanogenesis. These findings provide novel insights into the direct effect of biochar on microbial evolution and facilitate the reduction of WAS to achieve higher economic benefits in biogas production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.