Abstract

In this study, dynamic numerical analysis was conducted on the existing sound barrier wall structure and the recently developed double-sided solar-module-integrated sound barrier wall structure using the finite-difference method for numerical modeling. A seismic safety evaluation was performed based on a series of numerical analysis results. Both structures were modeled using a 3D modeling technique with FLAC 3D to account for differences in lateral stiffness. For seismic considerations, the Pohang seismic wave was selected to represent short-period earthquakes in line with Korea’s seismic characteristics. Additionally, the Hachinohe seismic wave was chosen to simulate long-period earthquakes and consider the effects of the seismic period. To calculate the input seismic waves based on the ground response, a site response analysis was conducted for a site designated for demonstrating a double-sided solar module-integrated sound barrier wall structure in Korea. The analysis reveals that the existing structure maintains overall structural integrity and ensures the safety of solar modules even in an earthquake with a return period of 2400 years. However, for a solar module-integrated sound barrier wall structure, stresses exceeding the compressive strength of the solar module occur in earthquakes with a return period exceeding 1000 years, necessitating additional design and reinforcement for preparation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call