Abstract

Dredged material can be used for marsh restoration by depositing it on the marsh surface (thin-layer placement), by releasing it at the mouth of channels and allowing tidal currents to transport it onto the marsh platform (channel seeding), or by creating new marshes over shallow areas of open water. We investigate the efficacy of these different methods using a comprehensive 2D marsh evolution model that simulates tidal dynamics, vegetation processes, bank and wave erosion, and ponding. Total marsh area is assessed over 50 years in an idealized microtidal marsh under different relative sea level rise (RSLR) scenarios. For a given volume of total sediment added, the frequency of deposition is relatively unimportant in maximizing total marsh area, but the spatial allocation of the dredged material is crucial. For a given volume of sediment, thin-layer deposition is most effective at preserving total marsh area, especially at high rates of RSLR. Channel seeding is less efficient, but it could still provide benefits if larger amounts of sediment are deposited every 1-2 years. Marsh creation is also beneficial, because it not only increases the marsh area, but additionally slows the erosion of the existing marsh. The 2D model is highly computationally efficient and thus suited to explore many scenarios when evaluating a restoration project. Coupling the model with a cost assessment of the different restoration techniques would provide a tool to optimize marsh restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call