Abstract

The laboratory-scale (in-vitro) microbial fermentation based on screening of process parameters (factors) and statistical validation of parameters (responses) using regression analysis. The recent trends have shifted from full factorial design towards more complex response surface methodology designs such as Box-Behnken design, Central Composite design. Apart from the optimisation methodologies, the listed designs are not flexible enough in deducing properties of parameters in terms of class variables. Machine learning algorithms have unique visualisations for the dataset presented with appropriate learning algorithms. The classification algorithms cannot be applied on all datasets and selection of classifier is essential in this regard. To resolve this issue, factor-response relationship needs to be evaluated as dataset and subsequent preprocessing could lead to appropriate results. The aim of the current study was to investigate the data-mining accuracy on the dataset developed using in-vitro pyruvate production using organic sources for the first time. The attributes were subjected to comparative classification on various classifiers and based on accuracy, multilayer perceptron (neural network algorithm) was selected as classifier. As per the results, the model showed significant results for prediction of classes and a good fit. The learning curve developed also showed the datasets converging and were linearly separable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.