Abstract

The performance of several combinations of feature extraction and target classification algorithms is analyzed for Synthetic Aperture Radar (SAR) imagery using the standard Moving and Stationary Target Acquisition and Recognition (MSTAR) evaluation method. For feature extraction, 2D Fast Fourier Transform (FFT) is used to extract Fourier coefficients (frequency information) while 2D wavelet decomposition is used to extract wavelet coefficients (time-frequency information), from which subsets of characteristic in-class "invariant" coefficients are developed. Confusion matrices and Receiver Operating Characteristic (ROC) curves are used to evaluate and compare combinations of these characteristic coefficients with several classification methods, including Lp metric distances, a Multi Layer Perceptron (MLP) Neural Network (NN) and AND Corporation's Holographic Neural Technology (HNeT) classifier. The evaluation method examines the trade-off between correct detection rate and false alarm rate for each combination of feature-classifier systems. It also measures correct classification, misclassification and rejection rates for a 90% detection rate. Our analysis demonstrates the importance of feature and classifier selection in accurately classifying new target images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.