Abstract
This paper describes procedures for computing the tightest possible best-case and worst-case bounds on the variance of a discrete, bounded, random variable when lower and upper bounds are available for its unknown probability mass function. An example from the application of the Monte Carlo method to the estimation of network reliability illustrates the procedures and, in particular, reveals considerable tightening in the worst-case bound when compared to the trivial worst-case bound based exclusively on range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: SIAM Journal on Scientific and Statistical Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.