Abstract

Australia’s future energy production will increasingly be focused on developing clean energy resources to achieve the goal of net zero greenhouse gas emissions by 2050. To achieve this, an understanding of Australia’s natural gas resources and greenhouse gas storage potential is needed to facilitate the rapid implementation and expansion of low-emission technologies. While Australia continues to be a net gas exporter, additional volumes are needed to support future domestic manufacturing capabilities. These extra volumes can be produced from existing accumulations that are close to infrastructure or can be unlocked from highly prospective, yet underexplored regions. The coming decade will see a dramatic change in the energy mix that supports the Australian economy. A major driver will be the development of a hydrogen production industry, initially using fossil fuels with carbon capture and storage (CCS) until the cost of hydrogen production from renewable energy becomes more reliable and competitive. The expansion and projected lower costs of renewable energy generation via solar and wind will ultimately replace much of the non-renewable energies for hydrogen production. Geoscience Australia’s energy-related work program is focused on supporting Australia’s energy transformation assessments of untapped resource potential onshore include the evaluation of geologic hydrogen occurrences, the presence and suitability of subsurface salt horizons for hydrogen storage and the distribution of effective reservoir and seal fairways for underground carbon storage. While offshore, new data from Geoscience Australia’s sea-floor mapping project will improve the understanding of suitable areas for offshore wind farms. Results from these research activities are being made publicly available either through Geoscience Australia’s data portal and its data repository.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.