Abstract

Model-informed precision dosing (MIPD) can aid dose decision-making for drugs such as gentamicin that have high inter-individual variability, a narrow therapeutic window, and a high risk of exposure-related adverse events. However, MIPD in neonates is challenging due to their dynamic development and maturation and by the need to minimize blood sampling due to low blood volume. Here, we investigate the ability of six published neonatal gentamicin population pharmacokinetic models to predict gentamicin concentrations in routine therapeutic drug monitoring from nine sites in the United State (n = 475 patients). We find that four out of six models predicted with acceptable levels of error and bias for clinical use. These models included known important covariates for gentamicin PK, showed little bias in prediction residuals over covariate ranges, and were developed on patient populations with similar covariate distributions as the one assessed here. These four models were refit using the published parameters as informative Bayesian priors or without priors in a continuous learning process. We find that refit models generally reduce error and bias on a held-out validation data set, but that informative prior use is not uniformly advantageous. Our work informs clinicians implementing MIPD of gentamicin in neonates, as well as pharmacometricians developing or improving PK models for use in MIPD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.