Abstract

Mangrove wetlands are economically and ecologically important ecosystems and accurate assessment of these wetlands with remote sensing can assist in their management and conservation. This study was conducted to evaluate airborne AISA hyperspectral imagery and image transformation and classification techniques for mapping black mangrove populations on the south Texas Gulf coast. AISA hyperspectral imagery was acquired from two study sites and both minimum noise fraction (MNF) and inverse MNF transforms were performed. Four classification methods, including minimum distance, Mahalanobis distance, maximum likelihood, and spectral angle mapper (SAM), were applied to the noise-reduced hyperspectral imagery and to the band-reduced MNF imagery for distinguishing black mangrove from associated plant species and other cover types. Accuracy assessment showed that overall accuracy varied from 84 percent to 95 percent for site 1 and from 69 percent to 91 percent for site 2 among the eight classifications for each site. The MNF images provided similar or better classification results compared with the hyperspectral images among the four classifiers. Kappa analysis showed that there were no significant differences among the four classifiers with the MNF imagery, though maximum likelihood provided excellent overall and class accuracies for both sites. Producer’s and user’s accuracies for black mangrove were 91 percent and 94 percent, respectively, for site 1 and both 91 percent for site 2 based on maximum likelihood applied to the MNF imagery. These results indicate that airborne hyperspectral imagery combined with image transformation and classification techniques can be a useful tool for monitoring and mapping black mangrove distributions in coastal environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.