Abstract

Broom snakeweed (Gutierrezia sarothrae (Pursh) Britt. & Rusby) is one of the most widespread and abundant rangeland weeds in western North America. The objectives of this study were to evaluate airborne hyperspectral imagery and compare it with aerial colour-infrared (CIR) photography and multispectral digital imagery for mapping broom snakeweed infestations. Airborne hyperspectral imagery along with aerial CIR photographs and digital CIR images was acquired from a rangeland area in south Texas. The hyperspectral imagery was transformed using minimum noise fraction (MNF) and then classified using minimum distance, Mahalanobis distance, maximum likelihood, and spectral angle mapper (SAM) classifiers. The digitized aerial photographs and the digital images were respectively mosaicked as one photographic image and one digital image; these were then classified using the same classifiers. Accuracy assessment showed that the maximum likelihood classifier performed the best for the three types of images. The best overall accuracies for three-class classification maps (snakeweed, mixed woody and mixed herbaceous) were 91.0%, 92.5%, and 95.0%, respectively, for the CIR photographic image, the digital CIR image and the MNF-transformed hyperspectral image. Kappa analysis showed that there were no significant differences in maximum likelihood-based classifications among the three types of images. These results indicate that airborne hyperspectral imagery along with aerial photography and multispectral imagery can be used for monitoring and mapping broom snakeweed infestations on rangelands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.