Abstract

The progressive deployment of electric vehicles (EVs) and the increased penetration of direct current (DC) and alternating current (AC) type renewable resources pave the path towards hybrid AC/DC microgrid operations. Considering the potential future participation of EVs in a hybrid AC/DC microgrid environment, this paper presents a generalized synopsis on EV charging in a commercial hybrid AC/DC microgrid. Constituents of this paper encompass the charger configurations, vehicle-to-grid (V2G) control strategies of individual chargers and their effects on the microgrid operations. Impacts of three types of EV chargers are considered in this paper which include three-phase AC and DC fast charging and single-phase residential charging. All configurations and their control strategies are developed in MATLAB/SIMULINK environment. Initial simulations are carried out considering real commercial load and solar irradiation data which shows stable microgird operations. Later the impacts of various types of EV charging on the AC and DC bus voltages and frequency of the commercial hybrid AC/DC microgrid are analyzed. The obtained results highlight the implications of bulk coordinated EV charging to reduce adverse operational impacts and network investment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.