Abstract

Understanding microbial metacommunity assembly and the underlying methanisms are fundamental objectives of aquatic ecology. However, little is known about how eutrophication, the primary water quality issue of aquatic ecosystems, regulates bacterioplankton metacommunity assembly at a regional scale in reservoirs. In this study, we applied a metacommunity framework to study bacterioplankton communities in 210 samples collected from 42 tropical coastal reservoirs in the wet summer season. We found that the spatial pattern of bacterioplankton community compositions (BCCs) at a regional scale was shaped mainly by species sorting. The reservoir trophic state index (TSI) was the key determinant of bacterioplankton metacommunity assembly. BCC turnover increased significantly with the TSI differences between sites (∆TSI) when ∆TSI was < 20, but remained at a level of about 80% when ∆TSI was > 20. Compared to oligo-mesotrophic and mesotrophic reservoirs, increased heterogeneity of co-occurrence bacterioplankton networks and bacterioplankton β-diversity were observed across eutrophic reservoirs. We propose that larger variation in phytoplankton community assembly may play directly or indirectly deterministic processes in controlling the bacterioplankton metacommunity assembly and became the potential mechanisms behind the observed higher BCC heterogeneity across the eutrophic reservoirs. Our research contributes to a broader understanding of the ecological effects of eutrophication on reservoir ecosystems and provides clues to the management of the tropical coastal reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call