Abstract

The crystallographic polarity of AlN grown on Si(111) by plasma assisted molecular beam epitaxy is intentionally inverted from N-polar to Al-polar at a planar boundary. The position of the inversion boundary is controlled by a two-step growth process that abruptly changes from Al-rich to N-rich growth conditions. The polarity inversion is induced by the presence of Si, which is incorporated from an Al-Si eutectic layer that forms during the initial stages of AlN growth and floats on the AlN surface under Al-rich growth conditions. When the growth conditions change to N-rich the Al and Si in the eutectic react with the additional N-flux and are incorporated into the solid AlN film. Relatively low levels of Al-Si eutectic formation combined with lateral variations in the Si incorporation lead to nonuniformity in the polarity inversion and formation of surprisingly narrow, vertical inversion domains. The results suggest that intentional incorporation of uniform layers of Si may provide a method for producing polarity engineered nitride structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.