Abstract
Abstract. Severe winter storms in combination with precipitation extremes pose a serious threat to Europe. Located at the southeastern exit of the North Atlantic's storm track, European coastlines are directly exposed to impacts by high wind speeds, storm floods and coastal erosion. In this study we analyze potential changes in simulated winter storminess and extreme precipitation, which may occur under 1.5 or 2 ∘C warming scenarios. Here we focus on a first simulation suite of the atmospheric model CAM5 performed within the HAPPI project and evaluate how changes of the horizontal model resolution impact the results regarding atmospheric pressure, storm tracks, wind speed and precipitation extremes. The comparison of CAM5 simulations with different resolutions indicates that an increased horizontal resolution to 0.25∘ not only refines regional-scale information but also improves large-scale atmospheric circulation features over the Euro-Atlantic region. The zonal bias in monthly pressure at mean sea level and wind fields, which is typically found in low-resolution models, is considerably reduced. This allows us to analyze potential changes in regional- to local-scale extreme wind speeds and precipitation in a more realistic way. Our analysis of the future response for the 2 ∘C warming scenario generally confirms previous model simulations suggesting a poleward shift and intensification of the meridional circulation in the Euro-Atlantic region. Additional analysis suggests that this shift occurs mainly after exceeding the 1.5 ∘C global warming level, when the midlatitude jet stream manifests a strengthening northeastward. At the same time, this northeastern shift of the storm tracks allows an intensification and northeastern expansion of the Azores high, leading to a tendency of less precipitation across the Bay of Biscay and North Sea. Regions impacted by the strengthening of the midlatitude jet, such as the northwestern coasts of the British Isles, Scandinavia and the Norwegian Sea, and over the North Atlantic east of Newfoundland, experience an increase in the mean as well as daily and sub-daily precipitation, wind extremes and storminess, suggesting an important influence of increasing storm activity in these regions in response to global warming.
Highlights
International climate policy discussions use annual mean globally averaged temperature targets as the metric to anchor climate mitigation and adaptation strategies
We focus on projected changes in winter storminess and precipitation extremes over the Euro-Atlantic region
The design of most state-of-the-art experiments, e.g., Coupled Model Inter-comparison Project (CMIP), is not well suited to address questions on climatic changes associated with the specific climate policy goals
Summary
International climate policy discussions use annual mean globally averaged temperature targets as the metric to anchor climate mitigation and adaptation strategies. While useful for climate policy development and implementation, global temperature targets do not explicitly convey the climate impacts that may be felt by society at seasonal and regional scales and make it difficult to justify any target as a safe level of warming (Knutti et al, 2016). Extratropical cyclones dominate the redistribution of energy with a net poleward heat transport. They typically form in the region of strong baroclinic activity at the (sub)polar front of Arctic vs (sub)tropical air masses. Large-scale storminess is dominated by multi-decadal variations in response to a complex interplay of different factors which may lead to changes in storm track position and intensity. Changes in the position of the sea-ice front push storm tracks southward while tropical sea surface temperatures (SSTs) build a barrier in the south (Shaw et al, 2016)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.