Abstract

Abstract This study combines operational reforecasts (2001–21) with results from a lower-resolution 41-yr reforecast (1980–2020) to provide a robust assessment of wintertime Euro-Atlantic regimes and their modulation by tropospheric and stratospheric teleconnection pathways in the European Centre for Medium-Range Weather Forecasts (ECMWF) Subseasonal to Seasonal Prediction project (S2S). In both operational and lower-resolution reforecasts, the climatological properties of wintertime Euro-Atlantic regimes, including regime structures, frequencies, and transition probabilities, are accurately simulated at S2S lead times. However, the 41-yr reforecasts allow us to diagnose substantial errors in regime statistics when conditioned on modes of intraseasonal-to-interannual variability. In particular, ECMWF reforecasts underestimate the response of the North Atlantic Oscillation (NAO) to the Madden–Julian oscillation (MJO) and fail to reproduce the modulation of MJO–NAO teleconnections by El Niño–Southern Oscillation (ENSO). Teleconnection and atmospheric wave diagnostics highlight two specific issues that are likely to contribute to these conditional errors in ECMWF reforecasts: (i) insufficient propagation of Rossby wave activity from the Pacific to the Atlantic following MJO phase 3 during El Niño conditions, when the direct tropospheric teleconnection pathway is most active; and (ii) an underestimated response of the stratospheric polar vortex following MJO phase 8 during La Niña conditions, when the indirect stratospheric teleconnection pathway is most active. Improving the representation of tropospheric and stratospheric teleconnection pathways is thus a priority for improving ECMWF forecasts of extratropical weather regimes and their associated surface impacts. Significance Statement Subseasonal to Seasonal Prediction project (S2S) forecasts are used operationally at ECMWF to provide early warning of cold conditions in Europe associated with persistent large-scale circulation patterns known as weather regimes. On average, ECMWF reforecasts accurately simulate wintertime Euro-Atlantic regime structures and frequencies at S2S lead times. However, regime forecasts show substantial errors when we restrict our analysis to certain phases of intraseasonal and interannual variability, such as El Niño–Southern Oscillation (ENSO). These errors are related to deficiencies in the simulated response of weather regimes to well-predicted variability in the tropics. Improving the representation of such tropical–extratropical teleconnections will improve predictions of extratropical weather regimes and their associated surface impacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call