Abstract

Abstract The paper addresses a numerical approach for calculating three-fluid hydrodynamics on Eulerian grids with taking into account surface tension and viscous effects. The medium considered consists of three different compressible fluids separated with interfaces. The fluids are assumed to be immiscible. The three-fluid flow is described by the reduced equilibrium model derived from the non-equilibrium three-phase model by performing an asymptotic analysis in the limit of zero relaxation time. To simulate surface tension effects, we extend the continuum surface force (CSF) model of two-fluid incompressible flow to the case of compressible three-fluid flow. A thermodynamically consistent surface energy of the compressible three-fluid flow is obtained by means of splitting the surface tension between distinct fluids into pairs of specific phase related surface tensions. Some aspects of the numerical method for solving the system of governing equations of the considered three-fluid model are discussed. Numerical results presented demonstrate the accuracy and robustness of the proposed model in simulating dynamics of interfaces and surface tension effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.