Abstract

This study examines the mass and Lagrangian transport, kinematic and dynamic characteristics of shallow-water breaking waves, focusing on the wave breaking, and jet impingement processes. A multiphase Navier–Stokes flow model has been developed to track the origin and trajectory for the jet and the splash-up using both a geometric piece-wise linear interface calculation volume-of-fluid (PLIC-VOF) and the Lagrangian particle tracking approaches. The model is first validated both quantitatively and qualitatively against the experimental data for the plunging jet and the splash-up during wave breaking, in which a good agreement is obtained. The mass transport and the origin of the jet and splash-up are studied using the new multi-component PLIC-VOF approach, and the different regions in the interior of the wave are tracked in an Eulerian way. Both horizontal and vertical drifts for the interior and surface particles are shown using the Lagrangian particles. The location and origin of the plunging jet can be clearly seen from the simulations. Various wave steepness and beach slopes have been investigated for different types of breakers. Furthermore, the detailed jet impingement, velocity, pressure, vorticity, and turbulence fields during wave breaking are discussed and presented, providing more detailed flow fields to gain further insight into the plunging jet and splash-up in shallow-water breaking waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.