Abstract

The Malliavin differentiability of a SDE plays a crucial role in the study of density smoothness and ergodicity among others. For Gaussian driven SDEs the differentiability issue is solved essentially in Cass et al., (2013). In this paper, we consider the Malliavin differentiability for the Euler scheme of such SDEs. We will focus on SDEs driven by fractional Brownian motions (fBm), which is a very natural class of Gaussian processes. We derive a uniform (in the step size n) path-wise upper-bound estimate for the Euler scheme for stochastic differential equations driven by fBm with Hurst parameter H>1/3 and its Malliavin derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.