Abstract
It is well known that rotation in three dimensions can be expressed as a quadratic in a skew symmetric matrix via the Euler-Rodrigues formula. A generalized Euler-Rodrigues polynomial of degree 2n in a skew symmetric generating matrix is derived for the rotation matrix of tensors of order n. The Euler-Rodrigues formula for rigid body rotation is recovered by n = 1. A Cayley form of the nth-order rotation tensor is also derived. The representations simplify if there exists some underlying symmetry, as is the case for elasticity tensors such as strain and the fourth-order tensor of elastic moduli. A new formula is presented for the transformation of elastic moduli under rotation: as a 21-vector with a rotation matrix given by a polynomial of degree 8. Explicit spectral representations are constructed from three vectors: the axis of rotation and two orthogonal bivectors. The tensor rotation formulae are related to Cartan decomposition of elastic moduli and projection onto hexagonal symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.