Abstract
This paper discusses the derivation of Euler's formula. To obtain this model, the writer derives Euler's formula from ex+iy by first finding the norm and argument of ex+iy. In this derivation we substitute the norm and argument of ex+iy on complex numbers in polar coordinates, until we get the derivation of Euler's formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, MAthematics and Computer Science (EMACS) Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.