Abstract

Eukaryotic initiation factor 6 (eIF6), an essential protein important in ribosome biosynthesis and assembly, was identified as an interacting partner of the beta-catenin C terminus in the yeast two-hybrid assay. Independent studies identified Drosophila eIF6 (DeIF6) in a genetic screen designed to detect new genes involved in the regulation of the Wnt/Wg (wingless) pathway. Ectopic expression of DeIF6 in wing discs results in a Wg phenotype. Expression of eIF6 in adenomatous polyposis coli (APC)-mutant colon cancer cells, which express high levels of active beta-catenin, showed that eIF6 selectively inhibits the Wnt pathway at the level of beta-catenin protein independently of proteasomal degradation. Incorporation of radiolabeled amino acids into beta-catenin was selectively decreased in cells that overexpressed eIF6. A similar inverse relationship of the two proteins was observed in the APC(min/+) mouse intestine, in which beta-catenin levels are very high. Taken together these data reveal a link between eIF6 and Wnt signaling, perhaps at the level of ribosome recycling on beta-catenin mRNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.