Abstract

DNA in its double-stranded form is energetically favoured and therefore very stable. However, DNA is involved in metabolic events and thus has a continuous dynamic. Processes such as DNA replication, DNA repair, DNA recombination and transcription require that DNA occurs transiently in a single-stranded form. This status can be achieved by enzymes called DNA helicases. These enzymes have the power to melt the hydrogen bonds between the base pairs by using nucleoside 5'-triphosphate hydrolysis as an energy source. A variety of different DNA helicases have recently been identified from eukaryotic viruses and cells. We focus on the current knowledge of these DNA helicases and their possible function in DNA transactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.