Abstract
A major feature that distinguishes prokaryotic organisms from eukaryotes is their less complex internal structure, in which all membrane-associated functions are thought to be present within a continuous lipid-protein bilayer, rather than with distinct organelles. Contrary to this notion, as described by Tucker and co-workers in this issue of Molecular Microbiology, the application of cryo-electron tomography to the purple bacterium Rhodobacter sphaeroides has demonstrated a heretofore unrecognized ultrastructural complexity within the intracytoplasmic membrane (ICM) housing the photosynthetic apparatus. In addition to distinguishing invaginations of the cytoplasmic membrane (CM) and interconnected vesicular structures still attached to the CM, a eukaryote-like ICM budding process was revealed, which results in the formation of fully detached vesicular structures. These bacterial organelles are able to carry out both the light-harvesting and light-driven energy transduction activities necessary for the cells to assume a photosynthetic lifestyle. Their formation is shown to represent the final stage in a membrane invagination and growth process, originating with small CM indentations, which after cell disruption give rise to a membrane fraction that can be separated from mature ICM vesicles by rate-zone sedimentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.