Abstract

The purple phototrophic bacteria synthesize an extensive system of intracytoplasmic membranes (ICM) in order to increase the surface area for absorbing and utilizing solar energy. Rhodobacter sphaeroides cells contain curved membrane invaginations. In order to study the biogenesis of ICM in this bacterium mature (ICM) and precursor (upper pigmented band - UPB) membranes were purified and compared at the single membrane level using electron, atomic force and fluorescence microscopy, revealing fundamental differences in their morphology, protein organization and function. Cryo-electron tomography demonstrates the complexity of the ICM of Rba. sphaeroides. Some ICM vesicles have no connection with other structures, others are found nearer to the cytoplasmic membrane (CM), often forming interconnected structures that retain a connection to the CM, and possibly having access to the periplasmic space. Near-spherical single invaginations are also observed, still attached to the CM by a 'neck'. Small indents of the CM are also seen, which are proposed to give rise to the UPB precursor membranes upon cell disruption. 'Free-living' ICM vesicles, which possess all the machinery for converting light energy into ATP, can be regarded as bacterial membrane organelles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.