Abstract
An entire ring R with unity is said to be Euclidean Domain (ED) if on R, we defined a function N: R \(\to\) \(\mathbb{Z}\)+ which admits proper generalization of the Euclidean division of integers. Every Euclidean domain (ED) is a Principal ideal domain (PID), but not all principal ideals are Euclidean. We provide detailed proof that the quadratic algebraic integer ring Q[\(\sqrt{-43}\)] is not Euclidean domain. We proved that the ring of algebraic integer in the quadratic complex field Q[\(\sqrt{-43}\)] is a principal ideal domain using the developed inequalities and field norm axioms in [1]. We proved that the ring Q[\(\sqrt{-43}\)] fails to have universal side divisors, thus, fails to be Euclidean domain (ED). This article extended the result application of [1] proving that ring R of algebraic integer in complex quadratic fields Q[\(\sqrt{-M}\)] for M = 43 is non-Euclidean PID in an understandable manner. We hope to look into the formation of these rings, thus, non-Euclidean geometries where the practical application will be more useful. E.g., Elliptic curves on finite fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Asian Journal of Mathematics and Computer Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.