Abstract

AbstractEucalyptus branches and bark represent highly abundant and available feedstocks with great potential for obtaining bio-based products. Distinct and integrated pretreatment fractionation strategies for eucalyptus branches and bark were performed for the efficient production of xylooligosaccharides (XOS). By combining pretreatments, a high yield of XOS was obtained from eucalyptus branches and bark. The branches and bark were presoaked in 8% (w/w) sodium hydroxide at 60 °C for 30 min to provide a deacetylation effect. The residues were then hydrothermally treated. The findings revealed that 4.64% of XOS originated from the bark and 6.19% from eucalyptus branches. It has been demonstrated that xylan may be selectively depolymerized during pretreatment by preventing excessive hydrolysis through the use of deacetylation in the first phase of the process. More XOS was produced using hydrothermal treatment, yielding 8.00% (w/w) in the branches and 5.12% in the bark. A significant amount of XOS with DP 2–5 might be obtained in certain experiments, up to 60%, but the most abundant XOS are usually those with DP > 5 (approximately 80% of all XOS). This work provides new insights into the effective generation of XOS under relatively mild conditions by overcoming the recalcitrant structure of eucalyptus branches and bark, representing a noteworthy advancement towards forestry leftover valorization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call