Abstract

The construction of ionic conductive hydrogels with complex deformation tolerance and excellent fatigue resistance is highly demanded yet challenging. Herein, a semi-interpenetrating ionic conductive hydrogel (SICH) is fabricated by a hydrogel-network constrained polymerization of 1-butyl-3-vinylimidazole tetrafluoroborate and acrylic acid in polyethylene oxide aqueous solution. Ascribing to the formation of a dense intermolecular hydrogen-bonded network, the SICH is capable of being stretched up to ~300%, compressed to ~85%, and recovered immediately when the external force is fully released. The SICH can readily work as a high deformation-tolerant ionic conductor for capacitive/resistive bimodal ionic sensors. The ionic sensor not only showed a wide response range to dynamic pressures (0–8 kPa) and excellent cycling stability (500 cycles) in a capacitive mode, but also demonstrated high sensitivity (gauge factor of ~1.1), excellent linear response (0–300% strain) and fast response time (80 ms) in a resistive mode. As a demonstration, a wearable bimodal SICH ionic sensor was assembled, showing high sensitivity, linearity, wide response range and great durability in detecting complex human motions including speaking and various joint bending.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call