Abstract

BackgroundCoronary thrombosis is a process with unpredictable clinical outcome. Changes of thrombus composition overtime influence tissue repair and stabilization. We investigated rates of cell deaths and cell proliferation at different time points after initiation of thrombosis. MethodsThrombectomy aspirates of 55 myocardial infarction patients were selected and histomorphologically classified as fresh (25), lytic (25), partially fibrocellular (10), completely fibrocellular (10). Paraffin sections were immunostained with anti-(cleaved) caspase-3/Casp3 (apoptosis), Citrullinated histone/CitH 3 (etosis), C-reactive protein/CRP and Ki67 (proliferation) in combination with either Feulgen counterstaining (DNA) or cell markers for granulocytes, macrophages, SMCs, platelets and endothelium. Rates of apoptosis, etosis and proliferation were measured as a percentage of total number of immunopositive pixels versus total number of DNA positive pixels, while co-localization with cell markers was assessed by digital image analysis. ResultsPositive staining of CitH3 was observed more frequently (93%) than Casp3 (70%), Ki67 (79%) or CRP (59%) (p < 0.05). Moreover, rate of etosis, found in granulocytes and macrophages, differed significantly among thrombi of different age, being higher in lytic (12.82) than in fresh (8.52) and late-organized (2.75) (p < 0.05). Such differences were not observed for the rates of apoptosis or cell proliferation related to thrombus age. CRP staining was present in fresh, lytic and organized thrombi, but did not reliably identify necrotic areas. ConclusionsDifferent patterns of cell death and cell proliferation are noticed during progression of coronary thrombus overtime, but with significant differences for only etosis. Etosis could potentially serve as a biomarker for thrombus instability with clinical significance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call