Abstract

Forty years after the discovery of metallocene catalysts, there are still several aspects that remain unresolved, especially when the “conventional” alkylaluminum activators are not used. Herein, we systematically investigated the synthesis of polyethylene (PE) via three different zirconocene catalysts, with different alkyl substituents, activated via different organoboron compounds. The polymerization behavior, as well as the properties of the materials, were evaluated. The results demonstrate that the highest catalytic activity is shown by bis(cyclopentadienyl)dimethylzirconium activated by trityl tetra(pentafluorophenyl)borate. Additionally, it was found that toluene is the optimum solvent for these systems and at these reaction conditions. Moreover, to validate our experimental results, a comprehensive mathematical model was developed on the basis of thermodynamic and kinetic principles. The concentration of ethylene transferred to the solvent phase (toluene) in a liquid–vapor equilibrium (LVE) system was estimated based on Duhem’s theorem. Arrhenius expressions for the kinetic rate constants of a proposed kinetic mechanism were estimated by a kinetic model, in which the rate of polymerization was fitted by a least-square optimization procedure and the molecular weight averages by the method of moments. The simulations of the coordination polymerization suggest the presence of two types of active sites, principally at low temperatures, and the reactivation of the deactivated sites via a boron-based activator. However, the effect of the temperature on the reactivation step was not clear; a deeper understanding via designed experiments is required.

Highlights

  • With the aim to provide insights regarding the ethylene polymerization conceived by zirconocenes and organoboron activators, we carried out a series of experiments using three different zirconocene catalysts, with different ligand substituents, activated via three different organoboron compounds

  • We validated our experimental results via a kinetic modeling study, which is presented of the article

  • Carbocation organoboron compounds ([(C6 H5 )3 C]+ [B(C6 F5 )4 ]− ) promoted the ethylene polymerization to the greatest extent, while zirconocenes with cyclopentadienyl rings having non-substituted-ligands were found to yield the highest activity, suggesting that, in this catalytic system, the steric hindrance from the substituents plays a greater role than their electron-releasing effect over the polymerization

Read more

Summary

Introduction

Polyethylene (PE), one of the most used and commercialized thermoplastics in the world, is produced by the polymerization of ethylene which is catalyzed via two main different routes: using heterogeneous processes with Ziegler–Natta catalysts, or via metallocene catalytic systems. Since the discovery of the catalytic activity of the homogenous catalysts based on biscyclopentadienyl titanium or zirconium dialkyl systems in the ethylene polymerization in the 1980s by Kaminsky and Sinn [1,2,3,4], metallocene systems have revolutionized the polyolefins field, because they enable the production of PE with narrow molecular weight distributions, low content of extractables, good processability, and Processes 2021, 9, 162 revolutionized the polyolefins field, because they enable the production of PE with narrow molecular weight distributions, low content of extractables, good processability, and superior properties properties [5].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call