Abstract

An iron- and methyl methacrylate (MMA)-based electrochemically mediated atom transfer radical polymerization (eATRP) system was developed for the first time. Kinetic behaviors, including the effect of applied potential and catalyst loading, were systematically investigated. Results indicated that with more negative electrode potential, the polymerization rate increased until the mass transport limitation was reached. However, reduction of the catalyst loading had adverse effects on polymerization behaviors, such as decreased polymerization rate and increased molecular weight distributions (Mw/Mn). In addition, a kinetic model based on the method of moments was also constructed to explain the mismatch in Mn and Mn,theo. Simulation results showed that slow initiation significantly influenced on the kinetic behaviors in this system. Iron(II) bromide-catalyzed normal ATRP, iron(III) bromide-catalyzed eATRP, and copper(II) bromide-catalyzed eATRP were conducted to compare and elucidate their respective polymer...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call