Abstract

It is significant to evaluate accurately energy efficiency of ethylene cracking furnace as the highest energy consumption device in ethylene production. However, previous energy efficiency evaluation methods mainly concentrate on system-level evaluation of ethylene production and fail to consider effects of production load on operation conditions, which are unsuitable for detailed evaluation online. Considering single energy efficiency content and impractical improvement scheme of DEA and unreasonable static baselines in TOPSIS, a modified TOPSIS energy efficiency evaluation method is proposed. A set of new energy efficiency indicators is designed through matter conversion and energy transformation together with matter and energy interaction. To acquire real-time energy efficiency a simulation model of cracking furnace is established by employing radial basis function neural network. To improve evaluation accuracy, the relations among energy efficiency and operation conditions and production load are quantified by calculation formulas of energy efficiency indicators and functions extracted from simulation model. The sequential quadratic programming algorithm is suggested to solve dynamic baselines according to real-time production load by adjusting operation conditions within constraints. Furthermore, optimal operation conditions are provided by searching for maximum comprehensive energy efficiency. Finally, validity of proposed evaluation method is illustrated by applying in a practical cracking furnace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.