Abstract

Pickering emulsions stabilized by nanoparticles have recently received great attention for their remarkable stability, in part a consequence of irreversible adsorption. In this study, we generate Pickering oil-in-water emulsions stabilized by ethyl cellulose (EC) nanoparticles without the addition of surfactants. Over a range of ionic strength and EC nanoparticle concentrations, a series of dynamic interfacial tension (IFT) measurements complemented by extended DLVO theoretical computations are conducted to quantitatively describe the behavior of EC nanoparticles at the interface of water with different alkanes. Regardless of ionic strength, there is no barrier against the adsorption of EC nanoparticles at the alkane-water interfaces studied and the particles tightly cover these interfaces with near maximal coverage (i.e., 91%). Remarkably, the rate of approach to maximum coverage of the alkane-water interface by EC nanoparticles during the later stages of adsorption is accelerated in the presence of salt at concentrations below the critical coagulation concentration (CCC), unlike the air-water interface. Above the CCC, alkane-water interfaces behave similar to air-water interfaces, showing decay in the adsorption flux which is attributed to an increase in surface blocking originating from the attachment of nanoparticles to nanoparticles already adsorbed at the interface. These findings shed light on particle-particle and particle-interface colloidal interactions at and near fluid-fluid interfaces, thereby improving our ability to use hydrophobic EC nanoparticles as emulsion stabilizers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.