Abstract
The integration of chatbots in oncology underscores the pressing need for human-centered AI that addresses patient and family concerns with empathy and precision. Human-centered AI emphasizes ethical principles, empathy, and user-centric approaches, ensuring technology aligns with human values and needs. This review critically examines the ethical implications of employing Large Language Models (LLMs) like GPT-3 and GPT-4 in oncology chatbots. It examines how these models replicate human-like language patterns, impacting the design of ethical AI systems. The paper identifies key strategies for ethically developing oncology chatbots, focusing on potential biases arising from extensive datasets and neural networks. Specific datasets, such as those sourced from predominantly Western medical literature and patient interactions, may introduce biases by over-representing certain demographic groups. Moreover, the training methodologies of LLMs, including fine-tuning processes, can exacerbate these biases, leading to outputs that may disproportionately favor affluent or Western populations while neglecting marginalized communities. By providing examples of biased outputs in oncology chatbots, the review highlights the ethical challenges LLMs present and the need for mitigation strategies. The study emphasizes integrating human-centric values into AI to mitigate these biases, ultimately advocating for the development of oncology chatbots that are aligned with ethical principles and capable of serving diverse patient populations equitably.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.