Abstract

Vanadium-based compounds are fantastic cathodes for aqueous zinc metal batteries due to the high specific capacity and excellent rate capability. Nevertheless, the practical application has been hampered by the dissolution of vanadium in traditional aqueous electrolytes owing to the strong polarity of water molecules. Herein, we propose a hybrid electrolyte made of Zn(ClO4)2 salt in tetraethylene glycol dimethyl ether (G4) and H2O solvents to upgrade the cycle life of Zn//K0.486V2O5 battery. The G4 jointly solvates with Zn2+ ions and replaces a portion of the H2O molecules in the Zn2+ solvation sheath. It forms a strong bond with H2O, reducing its activity, and significantly inhibiting vanadium dissolution and water-induced parasitic reaction. Consequently, the optimized electrolyte with H2O and G4 volume ratio of 5:5 enhances the cycling stability of Zn//K0.486V2O5 battery, enabling it to reach up to 600 cycles. In addition, the battery demonstrates a satisfactory reversible capacity of 475.7 mAh g-1 and excellent rate performance attributed to the moderate ionic conductivity (28.8 mS cm-1) of the hybrid electrolyte. Last but not least, in the optimized electrolyte, the symmetric Zn//Zn cells deliver a long cycling performance of 400 h, while the asymmetric Zn//Cu cells shows a high average coulombic efficiency of 97.4%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call