Abstract

Magnesium ion batteries have potential for large-scale energy storage. However, the high charge density of Mg2+ ions establishes a strong intercalation energy barrier in host materials, causing sluggish diffusion kinetics and structural degradation. Here, we report that the kinetic and dissolution issues connected to cathode materials can be resolved simultaneously using a tetraethylene glycol dimethyl ether (TEGDME)-water hybrid electrolyte. The lubricating and shielding effect of water solvent could boost the swift transport of Mg2+, contributing to a high diffusion coefficient within the sodium vanadate (NaV8O20·nH2O) cathode. Meanwhile, the organic TEGDME component can coordinate with water to diminish its activity, thus providing the hybrid electrolyte with a broad electrochemical window of 3.9 V. More importantly, the TEGDME preferentially amassed at the interface, leading to a robust cathode electrolyte interface layer that suppresses the dissolution of vanadium species. Consequently, the NaV8O20·nH2O cathode achieved a specific capacity of 351 mAh g-1 at 0.3 A g-1 and a long cycle life of 1000 cycles in this hybrid electrolyte. A mechanism study revealed the reversible interaction of Mg2+ during cycles. This organic water hybrid electrolyte is effective for overcoming the difficulty of multivalent ion storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.