Abstract
Ethephon, (2-chloroethyl)phosphonic acid, was sprayed at concentrations up to 69.2 millimolar to enhance gum formation in 1-year-old shoots of mature Prunus cerasus L. cv Montmorency trees. Gum accumulation caused rupturing of the shoot periderm, followed by gum extrusion. Lower ethephon concentrations were required to induce gum formation in spring and early summer (1.7-3.5 millimolar) then in late summer and fall (13.8-69.2 millimolar). The number of functional vessels, shoot hydraulic conductance, and water potential of both leaf and internode tissue decreased as gum content of shoots increased. Nontreated control shoots also contained small quantities of gum. There was no difference in neutral sugar composition of gum exuded by the tree, obtained from aqueous shoot extracts, or flushed from the vessels of shoots, whether induced by ethephon or not. Severe decrease in shoot and leaf water potential was associated with shoot die-back. Recovery of xylem function may occur where gummosis is less severe. Discrepancy between measured and predicted hydraulic conductance increased as shoot gum content increased, suggesting that decrease in number of functional vessels alone was not sufficient to explain the effects of gum on loss of shoot hydraulic conductance. Increased gum content in those vessels remaining functional would increase vessel sap viscosity and further reduce hydraulic conductance. The viscosities necessary to account for discrepancy between measured and predicted hydraulic conductance were calculated. Gum concentration less than 1.0% (w/v) would produce these viscosities.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have