Abstract

Acute ethanol administration induces significant modifications both in secretive and formative membranes of rat liver Golgi apparatus. The decrease in glycolipoprotein secretion and their retention into the hepatocyte contribute to the pathogenesis of alcohol-induced fatty liver. Molecular and cellular mechanisms behind the ethanol-induced injury of the liver secretory pathway are not yet completely defined. In this study on intact livers from ethanol-treated rats, the involvement of the Golgi compartment in the impairment of hepatic glycolipoprotein secretion has been correlated with changes in the expression level, subcellular distribution and enzymatic activity of protein kinase C (PKC) isoforms. Acute ethanol exposure determined a translocation of classic PKCs and δ isoform from the cytosol to cis and trans Golgi membranes, the site of glycolipoprotein retention in the hepatic cell. A marked stimulation of cytosolic ε PKC activity was observed throughout the period of treatment. The presence of activated PKC isozymes at the Golgi compartment of alcohol-treated rat livers may play a role in hepatic secretion and protein accumulation. Direct and indirect effects of ethanol consumption on PKC isozymes and Golgi function are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.