Abstract
The efficiency of stripping processes for volatile compounds is governed by mechanical and thermodynamic entrainments, which play crucial roles in ethanol removal during the extractive fermentation process. These mechanisms depend on variables such as bubble diameter, ethanol concentration, liquid volume, pressure, and temperature. However, the quantification of each of them separately and their dependence on bubble diameter have never been addressed. The present study proposes a new methodology to evaluate both mechanical and thermodynamic entrainments, based on experimental data and thermodynamic equilibrium analysis of the bubbles in reactors with working volumes of 10.0 and 50 L, aiming to clarify the role that bubble diameter (microbubbles, fine and coarse bubbles) plays in these mechanisms. The results indicated that thermodynamic equilibrium was reached for any size of bubbles up to 5 mm in diameter, under a wide range of experimental conditions with specific gas flow rates from 0.22 to 10 vvm. Equally important, mechanical entrainment was found to enrich the gas phase in ethanol by a factor of 15, representing a higher concentration factor than for thermodynamic entrainment, which was inconceivable initially. This introduces a new and promising approach to intensify the stripping process of volatile compounds by means of mechanical entrainment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemical Engineering and Processing - Process Intensification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.