Abstract
A fed-batch process and high-temperature simultaneous saccharification and fermentation (SSF) process were investigated to obtain high sugar yield and ethanol concentration. Different amounts of alkali-pretreated sugarcane bagasse were added during the first 24 h. For the highest final dry matter (DM) content of 25% (w/v), a maximal glucose and total sugar concentration of 79.53 g/L and 135.39 g/L, respectively, were achieved with 8.3 FPU/g substrate after 120 h of hydrolysis. Based on the hydrolysis experiment, two processes for ethanol production from sugarcane bagasse, simultaneous saccharification and fermentation (SSF) and separate hydrolysis and fermentation (SHF), were also compared using S. cerevisiae. The results indicated that ethanol concentration and yield in the SHF were higher, while ethanol productivity (gram per unit volume and over time) was lower. For 25% substrate loading, the ethanol productivity and ethanol concentration could reach 0.38 g.L-1.h-1 and 36.25 g/L SSF in 96 h, respectively, while that of SHF could reach 0.32 g.L-1.h-1, with an ethanol concentration of 47.95 g/L in 152 h for SHF. When high-temperature simultaneous saccharification and fermentation (SSF) process was performed by using Kluyveromyces marxianus NCYC 587 at 42 °C, 42.21 g/L ethanol (with an ethanol productivity of 0.44 g.L-1.h-1) was produced with 25% dry matter content and 8.3 FPU cellulase/g substrate, which meant 16.4% more ethanol when compared with SSF of S. cerevisiae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.