Abstract

Two processes for ethanol production from wheat straw have been evaluated — separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). The study compares the ethanol yield for biomass subjected to varying steam explosion pretreatment conditions: temperature and time of pretreatment was 200°C or 217°C and at 3 or 10 min. A rinsing procedure with water and NaOH solutions was employed for removing lignin residues and the products of hemicellulose degradation from the biomass, resulting in a final structure that facilitated enzymatic hydrolysis. Biomass loading in the bioreactor ranged from 25 to 100 g l−1 (dry weight). The enzyme-to-biomass mass ratio was 0.06. Ethanol yields close to 81% of theoretical were achieved in the two-step process (SHF) at hydrolysis and fermentation temperatures of 45°C and 37°C, respectively. The broth required addition of nutrients. Sterilisation of the biomass hydrolysate in SHF and of reaction medium in SSF can be avoided as can the use of different buffers in the two stages. The optimum temperature for the single-step process (SSF) was found to be 37°C and ethanol yields close to 68% of theoretical were achieved. The SSF process required a much shorter overall process time (≈30 h) than the SHF process (96 h) and resulted in a large increase in ethanol productivity (0.837 g l−1 h−1 for SSF compared to 0.313 g l−1 h−1 for SHF). Journal of Industrial Microbiology & Biotechnology (2000) 25, 184–192.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.