Abstract

PurposeThis study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.Design/methodology/approachThe milled CP was divided into three treatment groups in a small-scale flask experiment where each 20 g CP was subjected to two-stage hydrolysis. Different amount of water was added to the fermentation process of CP. The fermented samples were collected every 24 h for various analyses.FindingsThe results of the fermentation revealed that the highest ethanol productivity and fermentation efficiency was obtained at 17.38 ± 0.30% and 0.139 ± 0.003 gL−1 h−1. The study affirmed that ethanol production was increased for the addition of water up to 35% for the CP hydrolysate process.Practical implicationsThe finding of this study demonstrates that S. cerevisiae is the key player in industrial ethanol production among a variety of yeasts that produce ethanol through sugar fermentation. In order to design truly sustainable processes, it should be expanded to include a thorough analysis and the gradual scaling-up of this process to an industrial level.Originality/valueThis paper is an original research work dealing with bioethanol production from CP using S. cerevisiae microbe.HighlightsHydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivityHighest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiaeOptimal bioethanol concentration and yield were obtained at a hydration level of 35% agitationHighest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call