Abstract
PurposeIn an era marked by heightened geopolitical uncertainties, such as international conflicts and economic instability, the dynamics of energy markets assume paramount importance. Our study delves into this complex backdrop, focusing on the intricate interplay the between traditional and emerging energy sectors.Design/methodology/approachThis study analyzes the interconnections among green financial assets, renewable energy markets, the geopolitical risk index and cryptocurrency carbon emissions from December 19, 2017 to February 15, 2023. We investigate these relationships using a novel time-frequency connectedness approach and machine learning methodology.FindingsOur findings reveal that green energy stocks, except the PBW, exhibit the highest net transmission of volatility, followed by COAL. In contrast, CARBON emerges as the primary net recipient of volatility, followed by fuel energy assets. The frequency decomposition results also indicate that the long-term components serve as the primary source of directional volatility spillover, suggesting that volatility transmission among green stocks and energy assets tends to occur over a more extended period. The SHapley additive exPlanations (SHAP) results show that the green and fuel energy markets are negatively connected with geopolitical risks (GPRs). The results obtained through the SHAP analysis confirm the novel time-varying parameter vector autoregressive (TVP-VAR) frequency connectedness findings. The CARBON and PBW markets consistently experience spillover shocks from other markets in short and long-term horizons. The role of crude oil as a receiver or transmitter of shocks varies over time.Originality/valueGreen financial assets and clean energy play significant roles in the financial markets and reduce geopolitical risk. Our study employs a time-frequency connectedness approach to assess the interconnections among four markets' families: fuel, renewable energy, green stocks and carbon markets. We utilize the novel TVP-VAR approach, which allows for flexibility and enables us to measure net pairwise connectedness in both short and long-term horizons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.