Abstract

Ethanol can affect normal development of the cerebral cortex, e.g., it can disrupt cell migration and exacerbate cell death. In vitro studies using primary cultures or cell lines provide further evidence that cell migration and death are altered by ethanol exposure. Organotypic cultures are more complex than primary cell cultures, and maintain some normal connectivity, thus providing a "more in vivo-like" model of brain development. We predict that exposing organotypic cultures of fetal rat cerebral cortex to ethanol results in changes similar to those described in vivo. Organotypic cultures of brains from 16-day-old fetuses were exposed to ethanol (0, 200, 400 or 800 mg/dl) for 72 h. Stereological methods were used to assess the frequency of viable and dying cells. Dying cells were identified as having DNA with polyadenylated tails or as having condensed chromatin. A small amount of cell death was evident in the marginal zone (MZ) and cortical plate (CP) of control cultures. The MZ, normally a cell body-poor layer, was enriched with somata following exposure to 400 mg/dl ethanol. Ethanol-induced cell death in the MZ; the amount of cell death was doubled following exposure to 800 mg/dl ethanol. The CP was more sensitive than the MZ; cell death increased following treatment with 400 mg/dl ethanol. Thus, organotypic cultures show that ethanol disrupts neuronal migration and increases cell death in the developing cerebral cortex. The effects of ethanol were site-specific and concentration-dependent. These changes are similar to those described in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.