Abstract

A mathematical model for glucose-to-ethanol fermentation at high yeast cell concentrations was developed. The feasibility of improving fermenter productivity over that of a conventional continuous-stirred-tank fermenter by using multiple stage reactors and yeast cell recycling was predicted by computer simulation. The optimum size distribution for multistage fermentors was obtained for different glucose feedstream concentrations and different glucose conversion levels. Productivity increases over a single-stage reactor ranged from 1.2-2.0 times. The use of yeast cell recycling to increase cell concentration and productivity increases of over 4.0 times that of a system without recycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call