Abstract

Catechol 1,2 dioxygenase is a versatile enzyme with several potential applications. However, due to its low thermostability, its industrial potential is not being met. In this study, the thermostability of a mesophilic catechol 1,2 dioxygenase from the species Rhodococcus opacus was enhanced via the introduction of disulphide bonds into its structure. Engineered designs (56) were obtained using computational prediction applications, with a set of hypothesized selection criteria narrowing the list to 9. Following recombinant production and purification, several of the designs demonstrated substantially improved protein thermostability. Notably, variant K96C-D278C yielded improvements including a 4.6°C increase in T50, a 725% increase in half-life, a 5.5°C increase in Tm, and a >10-fold increase in total turnover number compared to wild type. Stacking of best designs was not productive. Overall, current state-of-the-art prediction algorithms were effective for design of disulfide-thermostabilized catechol 1,2 dioxygenase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.