Abstract

Ethanol intoxication results partly from actions of ethanol at specific ligand-gated ion channels. One such channel is the GABA(A) receptor complex, although ethanol's effects on GABA(A) receptors are variable. For example, we found that hippocampal neurons from selectively bred mice and rats with high hypnotic sensitivity to ethanol have increased GABA(A) receptor-mediated synaptic responses during acute ethanol treatment compared with mice and rats that display low behavioral sensitivity to ethanol. Here we investigate whether specific protein kinase C (PKC) isozymes modulate hypnotic and GABA(A) receptor sensitivity to ethanol. We examined acute effects of ethanol on GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) in mice lacking either PKCgamma (PKCgamma(-/-)) or PKCepsilon (PKCepsilon(-/-)) isozymes and compared the results to those from corresponding wild-type littermates (PKCgamma(+/+) and PKCepsilon(+/+)). GABA(A) receptor-mediated IPSCs were evoked in CA1 pyramidal neurons by electrical stimulation in stratum pyramidale, and the responses were recorded in voltage-clamp mode using whole-cell patch recording techniques. Ethanol (80 mM) enhanced the IPSC response amplitude and area in PKCgamma(+/+) mice, but not in the PKCgamma(-/-) mice. In contrast, ethanol markedly potentiated IPSCs in the PKCepsilon(-/-) mice, but not in PKCepsilon(+/+) littermates. There was a positive correlation between ethanol potentiation of IPSCs and the ethanol-induced loss of righting reflex such that mice with larger ethanol-induced increases in GABA(A) receptor-mediated IPSCs also had higher hypnotic sensitivity to ethanol. These results suggest that PKCgamma and PKCepsilon signaling pathways reciprocally modulate both ethanol enhancement of GABA(A) receptor function and hypnotic sensitivity to ethanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.