Abstract

The ethylenetetrafluoroethylene (ETFE) is a polymer formed by alternating ethylene and tetrafluoroethylene segments. It has high impact resistance and useful mechanical properties. ETFE can be used as components of pumps, valves, tie wraps, and electrical components. It can also be applied in the field of medical physics as intra venous catheters and as radiation dosimeter. When a material is exposed to the ionizing radiation, it suffers damage that depends on the type, energy and intensity of the radiation. In order to determine the radiation damage mechanism, ETFE films were bombarded with 1MeV protons to the fluence between 1×1011 and 1×1016protons/cm2 and the chemical species emitted during the bombardment were measured with residual gas analysis (RGA) and show that HF gas is the entity preferentially emitted. Optical absorption photospectrometry (OAP) and attenuated total reflectometry fourier transform infrared (ATR-FTIR) shows quantitative chemical evidence of the damage. Our results show that damage is detectable at low proton fluence, but damage that can compromise the application in dosimetry occurs only for fluence greater than 1014protons/cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.