Abstract

Etching yields of SiO2 have been determined for F+, CFx+ (x=1,2,3) ion irradiation with energy ranging from 250 to 2000 eV using a mass-analyzed ion-beam apparatus that can irradiate a single species ion to sample surfaces under an ultrahigh vacuum condition. The etching yield of CFx+ (x=1,2,3) was enhanced by the chemical effects of the ions, and both carbon and fluorine atoms from the incident ions were significant reactants. For lower energies, the etching yield increased with increasing ion energy. Above 1000 eV, the etching yield was gradually saturated with increasing ion energy. In the low ion energy region, steady etching did not occur, and an amorphous fluorinated carbon (a-C:F) film was deposited on the SiO2 surface. The ion energy region in which a-C:F film deposition occurred decreased with increasing fluorine atoms in incident CFx+ (x=1,2,3) ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.