Abstract
The rapid development of state-of-the-art nanotechnology is driven by the emerging novel nanofabrication methods, such as self-rolling of 2D materials or nanosheets. Nonetheless, the traditional chemical etching-based "roll-up" technologies suffer from a low fabrication efficiency and generally produce only scroll-like structures. In this work, we develop a versatile, ultrafast, and etching-free method to synthesize self-rolled metallic nanostructures through hydrogel surface buckling enabled exfoliation, which enables rapid exfoliation and self-rolling of metallic nanosheets at a rate about 1 to 2 orders of magnitude faster than other methods. Furthermore, we observe a scroll-helix-scroll transition through the twisting of the self-rolled nanosheets. Through extensive finite element simulations and experiments, we reveal the thermodynamics underpinning these configurational transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.